Skip to main content

Home/ Dr. Goodyear/ Group items matching ""low fat diet"" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
fitspresso

https://www.fitspresso-co.com/ - 0 views

  •  
    FitSpresso™ | Official Site fitspresso-co.com FitSpresso Only $39/Bottle Limited Time Offer! FitSpresso Special Deal + Special 51% Discount Save $660 + 180 Days Money Back Guarantee FitSpresso Herpesyl Five Star A dietary product formulated to assist users in reducing weight can increase other advantages that can support overall health. This product can assist users in getting closer to the desirable body weight. Regular Price: 149/per bottle Only for: $39/per bottle Buy Now What IsFitSpresso? FitSpresso is promoted as a natural supplement that comes in the form of diet pills, and it can aid in rapid and efficient weight loss, similar to many other supplements. The term "natural supplements refers to a nutritional supplement that is made entirely of natural, chemical-free materials. You can utilize these organic ingredients to aid in natural weight loss. It can speed up your body's metabolism and assist with other crucial processes. All parts of our bodies are impacted by weight increase, and not only do we need to deal with the increased weight, but we also need to deal with the numerous problems and illnesses that come along with it. This refers to the risk of developing chronic cardiac conditions, low blood pressure, and, in some circumstances, problems with blood sugar. However, FitSpresso even with its bright and bold claims, can help you efficiently manage your weight and completely avoid these extra uncomfortable problems. FitSpresso is a supplement that comes in the form of a pill, which makes it tasty, simple to swallow, and handy. According to the manufacturer, these diet tablets are GMO-free and toxic-free, making them edible. This is why we have things such as weight loss supplements. Thanks to modern advancements, we can just take a dietary supplement pill to bring about significant weight loss in a completely healthy and natural manner. Not only this, but dietary supplements can also support healthy blood sugar levels and help with
Nathan Goodyear

Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function - 0 views

  • both obesity and low testosterone are also risk factors for neural dysfunction, including cognitive impairment [58–61] and development of AD
  • Levels of obesity and testosterone are often inversely correlated
  • diet-induced obesity causes significant metabolic disturbances and impairs central and peripheral nervous systems.
  • ...23 more annotations...
  • both obesity and low testosterone are linked with promotion of inflammatory pathways [70–72] and exert harmful actions on the central [73–75] and peripheral [29,76] nervous systems
  • In general, obesity-related changes were worsened by low testosterone and improved by testosterone treatment; however, this relationship was not statistically significant in several instances. Further, our data suggest that a common pathway that may contribute to obesity and testosterone effects is regulation of inflammation
  • fasting blood glucose levels were independently and additively increased by GDX-induced testosterone depletion and high-fat diet
  • testosterone treatment significantly reduced fasting glucose under both the normal and high-fat diets, demonstrating potential therapeutic efficacy of testosterone supplementation
  • fasting insulin, insulin resistance (HOMA index), and glucose tolerance, low testosterone tended to exacerbate and or testosterone treatment improved outcomes.
  • testosterone status did not significantly affect body weight
  • testosterone’s effects likely do not indicate an indirect result on adiposity but rather regulatory action(s) on other aspects of metabolic homeostasis
  • Prior work in rodents has shown diet-induced obesity induces insulin resistance in rat brain [63] and that testosterone replacement improves insulin sensitivity in obese rats [64]. Our findings are consistent with the human literature, which indicates that (i) testosterone levels are inversely correlated to insulin resistance and T2D in healthy [30,65] as well as obese men [66], and (ii) androgen therapy can improve some metabolic measures in overweight men with low testosterone
  • it has been shown that TNFα has inhibitory effects on neuron survival, differentiation, and neurite outgrowth
  • Our data demonstrate that low testosterone and obesity independently increased cerebrocortical mRNA levels of both TNFα and IL-1β
  • Testosterone status also affected metabolic and neural measures
  • many beneficial effects of testosterone, including inhibition of proinflammatory cytokine expression
  • neuroprotection [80,81], are dependent upon androgen receptors, the observed effects of testosterone in this study may involve androgen receptor activation
  • testosterone can be converted by the enzyme aromatase into estradiol, which is also known to exert anti-inflammatory [82] and neuroprotective [83] actions
  • glia are the primary sources of proinflammatory molecules in the CNS
  • poorer survival of neurons grown on glia from mice maintained on high-fat diet
  • Since testosterone can affect glial function [86] and improve neuronal growth and survival [87–89], it was unexpected that testosterone status exhibited rather modest effects on neural health indices with the only significant response being an increase in survival in the testosterone-treated, high-fat diet group
  • significantly increased expression of TNFα and IL-1β in glia cultures derived from obese mice
  • testosterone treatment significantly lowered TNFα and IL-1β expression to near basal levels even in obese mice, indicating a protective benefit of testosterone across diet conditions
  • IL-1β treatment has been shown to induce synapse loss and inhibit differentiation of neurons
  • Testosterone status and diet-induced obesity were associated with significant regulation of macrophage infiltration
  • testosterone prevented and/or restored thermal nociception in both diet groups
  • a possible mechanism by which obesity and testosterone levels may affect the health of both CNS and PNS
  •  
    Study points to obesity and low Testosterone contribution of neuroinflammation.  No effect of body weight was seen with TRT.  This animal model found similar positive effects of TRT in insulin sensitivity.  Obesity and low T increase inflammatory cytokine production: this study found an increase in TNF-alpha and IL-1beta and TRT reduced TNF-alpha and IL-1beta to near base-line.  Testosterone is neuroprotective and this study reviewed the small volume of evaded that pointed to benefit from estradiol.  Testosterone's effect on glial survival was positive but not significant.  Obesity and low T were found to be associated with increased macrophage infiltration in the PNS with increased TNF-alpha and IL-1beta.   Testosterone therapy improved peripheral neuropathy via its positive effects on nocicieption.
Nathan Goodyear

Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk - 0 views

  • Weight gain has been associated with a higher gut permeability
  • a high-fat diet promotes LPS absorption
  • higher concentrations of fatty acids impair intestinal barrier integrity
  • ...37 more annotations...
  • The starting point for innate immunity activation is the recognition of conserved structures of bacteria, viruses, and fungal components through pattern-recognition receptors
  • TLRs are PRRs that recognize microbe-associated molecular patterns
  • TLRs are transmembrane proteins containing extracellular domains rich in leucine repeat sequences and a cytosolic domain homologous to the IL1 receptor intracellular domain
  • The major proinflammatory mediators produced by the TLR4 activation in response to endotoxin (LPS) are TNFα, IL1β and IL6, which are also elevated in obese and insulin-resistant patients
  • Obesity, high-fat diet, diabetes, and NAFLD are associated with higher gut permeability leading to metabolic endotoxemia.
  • Probiotics, prebiotics, and antibiotic treatment can reduce LPS absorption
  • LPS promotes hepatic insulin resistance, hypertriglyceridemia, hepatic triglyceride accumulation, and secretion of pro-inflammatory cytokines promoting the progression of fatty liver disease.
  • In the endothelium, LPS induces the expression of pro-inflammatory, chemotactic, and adhesion molecules, which promotes atherosclerosis development and progression.
  • In the adipose tissue, LPS induces adipogenesis, insulin resistance, macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines and chemokines.
  • the gut microbiota has been recently proposed to be an environmental factor involved in the control of body weight and energy homeostasis by modulating plasma LPS levels
  • dietary fats alone might not be sufficient to cause overweight and obesity, suggesting that a bacterially related factor might be responsible for high-fat diet-induced obesity.
  • This was accompanied in high-fat-fed mice by a change in gut microbiota composition, with reduction in Bifidobacterium and Eubacterium spp.
  • n humans, it was also shown that meals with high-fat and high-carbohydrate content (fast-food style western diet) were able to decrease bifidobacteria levels and increase intestinal permeability and LPS concentrations
  • it was demonstrated that, more than the fat amount, its composition was a critical modulator of ME (Laugerette et al. 2012). Very recently, Mani et al. (2013) demonstrated that LPS concentration was increased by a meal rich in saturated fatty acids (SFA), while decreased after a meal rich in n-3 polyunsaturated fatty acids (n-3 PUFA).
  • this effect seems to be due to the fact that some SFA (e.g., lauric and mystiric acids) are part of the lipid-A component of LPS and also to n-3 PUFA's role on reducing LPS potency when substituting SFA in lipid-A
  • these experimental results suggest a pivotal role of CD14-mediated TLR4 activation in the development of LPS-mediated nutritional changes.
  • This suggests a link between gut microbiota, western diet, and obesity and indicates that gut microbiota manipulation can beneficially affect the host's weight and adiposity.
  • endotoxemia was independently associated with energy intake but not fat intake in a multivariate analysis
  • in vitro that endotoxemia activates pro-inflammatory cytokine/chemokine production via NFκB and MAPK signaling in preadipocytes and decreased peroxisome proliferator-activated receptor γ activity and insulin responsiveness in adipocytes.
  • T2DM patients have mean values of LPS that are 76% higher than healthy controls
  • LPS-induced release of glucagon, GH and cortisol, which inhibit glucose uptake, both peripheral and hepatic
  • LPSs also seem to induce ROS-mediated apoptosis in pancreatic cells
  • Recent evidence has been linking ME with dyslipidemia, increased intrahepatic triglycerides, development, and progression of alcoholic and nonalcoholic fatty liver disease
  • The hepatocytes, rather than hepatic macrophages, are the cells responsible for its clearance, being ultimately excreted in bile
  • All the subclasses of plasma lipoproteins can bind and neutralize the toxic effects of LPS, both in vitro (Eichbaum et al. 1991) and in vivo (Harris et al. 1990), and this phenomenon seems to be dependent on the number of phospholipids in the lipoprotein surface (Levels et al. 2001). LDL seems to be involved in LPS clearance, but this antiatherogenic effect is outweighed by its proatherogenic features
  • LPS produces hypertriglyceridemia by several mechanisms, depending on LPS concentration. In animal models, low-dose LPS increases hepatic lipoprotein (such as VLDL) synthesis, whereas high-dose LPS decreases lipoprotein catabolism
  • When a dose of LPS similar to that observed in ME was infused in humans, a 2.5-fold increase in endothelial lipase was observed, with consequent reduction in total and HDL. This mechanism may explain low HDL levels in ‘ME’ and other inflammatory conditions such as obesity and metabolic syndrome
  • It is known that the high-fat diet and the ‘ME’ increase intrahepatic triglyceride accumulation, thus synergistically contributing to the development and progression of alcoholic and NAFLD, from the initial stages characterized by intrahepatic triglyceride accumulation up to chronic inflammation (nonalcoholic steatohepatitis), fibrosis, and cirrhosis
  • On the other hand, LPS activates Kupffer cells leading to an increased production of ROS and pro-inflammatory cytokines like TNFα
  • high-fat diet mice presented with ME, which positively and significantly correlated with plasminogen activator inhibitor (PAI-1), IL1, TNFα, STAMP2, NADPHox, MCP-1, and F4/80 (a specific marker of mature macrophages) mRNAs
  • prebiotic administration reduces intestinal permeability to LPS in obese mice and is associated with decreased systemic inflammation when compared with controls
  • Cani et al. also found that high-fat diet mice presented with not only ME but also higher levels of inflammatory markers, oxidative stress, and macrophage infiltration markers
  • This suggests that important links between gut microbiota, ME, inflammation, and oxidative stress are implicated in a high-fat diet situation
  • high-fat feeding is associated with adipose tissue macrophage infiltration (F4/80-positive cells) and increased levels of chemokine MCP-1, suggesting a strong link between ME, proinflammatory status, oxidative stress, and, lately, increased CV risk
  • LPS has been shown to promote atherosclerosis
  • markers of systemic inflammation such as circulating bacterial endotoxin were elevated in patients with chronic infections and were strong predictors of increased atherosclerotic risk
  • As a TLR4 ligand, LPS has been suggested to induce atherosclerosis development and progression, via a TLR4-mediated inflammatory state.
  •  
    Very nice updated review on Metabolic endotoxemia
Nathan Goodyear

Lowered testosterone in male obesity: Mechanisms, morbidity and management Tang Fui MN, Dupuis P, Grossmann M - Asian J Androl - 0 views

  • The number of overweight people is expected to increase from 937 million in 2005 to 1.35 billion in 2030
  • Similarly the number of obese people is projected to increase from 396 million in 2005 to 573 million in 2030
  • By 2030, China alone is predicted to have more overweight men and women than the traditional market economies combined
  • ...37 more annotations...
  • diacylglycerol O-acyltransferase 2 (DGAT2), mechanistically implicated in this differential storage, [10] is regulated by dihydrotestosterone, [11] suggesting a potential role for androgens to influence the genetic predisposition to either the MHO or MONW phenotype.
  • bariatric surgery achieves 10%-30% long-term weight loss in controlled studies
  • The fact that obese men have lower testosterone compared to lean men has been recognized for more than 30 years
  • Reductions in testosterone levels correlate with the severity of obesity and men
  • epidemiological data suggest that the single most powerful predictor of low testosterone is obesity, and that obesity is a major contributor of the age-associated decline in testosterone levels.
  • healthy ageing by itself is uncommonly associated with marked reductions in testosterone levels
  • obesity blunts this LH rise, obesity leads to hypothalamic-pituitary suppression irrespective of age which cannot be compensated for by physiological mechanisms
  • Reductions in total testosterone levels are largely a consequence of reductions in sex hormone binding globulin (SHBG) due to obesity-associated hyperinsulinemia
  • although controversial, measurement of free testosterone levels may provide a more accurate assessment of androgen status than the (usually preferred) measurement of total testosterone in situations where SHBG levels are outside the reference range
  • SHBG increases with age
  • marked obesity however is associated with an unequivocal reduction of free testosterone levels, where LH and follicle stimulating hormone (FSH) levels are usually low or inappropriately normal, suggesting that the dominant suppression occurs at the hypothalamic-pituitary level
  • adipose tissue, especially when in the inflamed, insulin-resistant state, expresses aromatase which converts testosterone to estradiol (E 2 ). Adipose E 2 in turn may feedback negatively to decrease pituitary gonadotropin secretion
  • diabetic obesity is associated with decreases in circulatory E 2
  • In addition to E 2 , increased visceral fat also releases increased amounts of pro-inflammatory cytokines, insulin and leptin; all of which may inhibit the activity of the HPT axis at multiple levels
  • In the prospective Massachusetts Male Aging Study (MMAS), moving from a non-obese to an obese state resulted in a decline of testosterone levels
  • weight loss, whether by diet or surgery, increases testosterone levels proportional to the amount of weight lost
  • fat is androgen-responsive
  • low testosterone may augment the effects of a hypercaloric diet
  • In human male ex vivo adipose tissue, testosterone decreased adipocyte differentiation by 50%.
  • Testosterone enhances catecholamine-induced lipolysis in vitro and reduces lipoprotein lipase activity and triglyceride uptake in human abdominal adipose tissue in vivo
  • in men with prostate cancer receiving 12 months of androgen deprivation therapy, fat mass increased by 3.4 kg and abdominal VAT by 22%, with the majority of these changes established within 6 months
  • severe sex steroid deficiency can increase fat mass rapidly
  • bidirectional relationship between testosterone and obesity
  • increasing body fat suppresses the HPT axis by multiple mechanisms [30] via increased secretion of pro-inflammatory cytokines, insulin resistance and diabetes; [19],[44] while on the other hand low testosterone promotes further accumulation of total and visceral fat mass, thereby exacerbating the gonadotropin inhibition
  • androgens may play a more significant role in VAT than SAT
  • men undergoing androgen depletion for prostate cancer show more marked increases in visceral compared to subcutaneous fat following treatment
    • Nathan Goodyear
       
      Interesting: low T increases VAT, yet T therapy does not reduce VAT, yet T therapy reduces SAT.
  • irisin, derived from muscle, induces brown fat-like properties in rodent white fat
  • androgens can act via the PPARg-pathway [37] which is implicated in the differentiation of precursor fat cells to the energy-consuming phenotype
  • low testosterone may compound the effect of increasing fat mass by making it more difficult for obese men to lose weight via exercise
  • pro-inflammatory cytokines released by adipose tissue may contribute to loss of muscle mass and function, leading to inactivity and further weight gain in a vicious cycle
  • Sarcopenic obesity, a phenotype recapitulated in men receiving ADT for prostate cancer, [55] may not only be associated with functional limitations, but also aggravate the metabolic risks of obesity;
  • observational evidence associating higher endogenous testosterone with reduced loss of muscle mass and crude measures of muscle function in men losing weight
  • genuine reactivation of the HPT axis in obese men requires more substantial weight-loss
  • A number of intervention studies have confirmed that both diet- and surgically-induced weight losses are associated with increased testosterone, with the rise in testosterone generally proportional to the amount of weight lost
  • men, regardless of obesity level, can benefit from the effect of weight loss.
  • inconsistent effect of testosterone on VAT
  •  
    to be read
Nathan Goodyear

Divergent trends in obesity and fat intake patterns... [Am J Med. 1997] - PubMed - NCBI - 0 views

  •  
    Fat intake is inversely associated with the obesity trend.  During, the 80's, a low fat diet was all the craze.  However, the obesity trend increased with the incorporation of the the low fat diet in America.
Nathan Goodyear

Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet - NEJM - 0 views

  •  
    Nice study, the DIRECT study, found a better weight loss and longer maintenance of weight loss in low carbohydrate diet compared to low fat diet and mediterranean diet.  
Nathan Goodyear

A Lower-Carbohydrate, Higher-Fat Diet Reduces Abdominal and Intermuscular Fat and Increases Insulin Sensitivity in Adults at Risk of Type 2 Diabetes - 0 views

  •  
    Diet higher in fats and lower in carbs associated with a reduction in weight, fat mass, improved insulin sensitivity, lowered fasting glucose, and a reduction in TNF-alpha
Nathan Goodyear

JAMA Network | JAMA: The Journal of the American Medical Association | Effects of Protein, Monounsaturated Fat, and Carbohydrate Intake on Blood Pressure and Serum LipidsResults of the OmniHeart Randomized Trial - 0 views

  •  
    In this study, a high carbohydrate diet was replaced with a diet higher in monosaturated fats.  The result was: a lower carb diet with resultant increase in monosaturated fats resulted in a reduction in triglycerides, reduction in systolic B/P, increase in HDL, and resultant decrease in CVD risk
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutrition & Metabolism | Full Text - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Low-fat diets and testosterone in men: Systematic review and meta-analysis of intervention studies - ScienceDirect - 0 views

  •  
    Low fat diet lowers androgens more that high fat diet in this meta-analysis.
  •  
    What do you think about this topical Androgel 50mg (https://tolariz.com/androgel-50mg/) ? Is it really effective for transgender women to men?
Nathan Goodyear

A Randomized Pilot Trial of a Moderate Carbohydrate Diet Compared to a Very Low Carbohydrate Diet in Overweight or Obese Individuals with Type 2 Diabetes Mellitus or Prediabetes - 0 views

  •  
    low carb ketogenic diet, high in fat worked better in glycemic control versus DA low fat, medium carbohydrate, calorie restricted diet.
Nathan Goodyear

JAMA Network | JAMA: The Journal of the American Medical Association | Low-Fat Dietary Pattern and Risk of Colorectal CancerThe Women's Health Initiative Randomized Controlled Dietary Modification Trial - 0 views

  •  
    The women's health initiative dietary modification trial of almost 50,000 women found no association between a low fat diet and a reduction of colorectal cancer.  Translation: a low fat diet does not lower the risk of colorectal cancer.
Nathan Goodyear

JAMA Network | JAMA: The Journal of the American Medical Association | Effects of Dietary Composition on Energy Expenditure During Weight-Loss MaintenanceDietary Composition During Weight-Loss Maintenance - 0 views

  •  
    small study shows that low carb results in greater calories burned in weight loss.  The least calories burned goes to low fat diet.  Many, many studies have show the negative benefits of a low fat diet.
Nathan Goodyear

Fat-free mass index and fat mass index percentiles in Caucasians aged 1898 y - 0 views

  • BMI is the sum of FFMI+FMI
  • FMI were significantly higher in elderly subjects as compared to younger ones
  • During menopause and aging39,40 changes in FFM and FM are not adequately picked up by changes in BMI
  • ...8 more annotations...
  • One advantage of FMI, as compared to the BMI concept, is that it amplifies the relative effect of aging on body fat
  • We believe that the definition of obesity based on relative body fat (ie percentage) remains of great value for the definition of obesity. However, in a situation in which a patient is losing weight without substantially changing his/her relative body fat (as is the case with crash diets), the calculation of FMI will quantitatively reveal the amount of body fat store lost.
  • high sensitivity of FMI (respectively FFMI) to a slight change of body fat stores
  • Sarcopenic obesity has been defined as a low FFM associated with a high body fat
  • relative FFM lower than 73% (ie a relative body fat greater than 27%) in men and a FFM lower than 62% (ie a body fat greater than 38%) in women.
  • FMIs greater than 8.2 kg/m2 in men and 11.8 kg/m2 in women would define the 'overfat' status (rather than the overweight range) in terms of fat mass
  • In young women, FMI averaged 5.5 kg/m2 (range 5th-95th percentile: 3.5-8.7 kg/m2) ie 38% higher than in males
  • the average FMI for young men was 4.0 kg/m2
  •  
    good review of FMI, FFMI, and BMI.
Nathan Goodyear

PLOS ONE: Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular Size in Aging Mice - 0 views

  • Studies in both humans and rodents, however, suggest that low testosterone is due to age-related lesions in testes rather than irregular luteinizing hormone metabolism
  • Various dietary factors and diet-induced obesity have been shown to increase the risk for late onset male hypogonadism and low testosterone production in both humans and mice
  • Testosterone deficiency and metabolic diseases such as obesity appear to inter-digitate in complex cause-and-effect relationships
  • ...28 more annotations...
  • dietary supplementation of aged mice with the probiotic bacterium Lactobacillus reuteri makes them appear to be younger than their matched untreated sibling mice
  • These results indicate that gut microbiota induce modulation of local gastrointestinal immunity resulting in systemic effects on the immune system which activate metabolic pathways that restore tissue homeostasis and overall health
  • all these studies we consistently observed that young and aged mice consuming purified L. reuteri organisms had particularly large testes and a dominant male behavior.
  • The testes of probiotic-fed aged mice were rescued from both seminiferous tubule atrophy and interstitial Leydig cell area reduction typical of the normal aging process. Preservation of testicular architecture despite advanced age or high-fat diet coincided with remarkably high levels of circulating testosterone. The beneficial effects of probiotic consumption were recapitulated by the depletion of the pro-inflammatory cytokine Il-17.
  • feeding of L. reuteri consistently increased the gonadal weights, consumption of a non-pathogenic strain of Escherichia coli (E. coli) K12 organisms did not affect testicular weight
  • mice with dietary L. reuteri supplements were rescued from diet-induced obesity and had normal body weight and lean physique
  • Despite the comparable numbers of ST profiles, we determined that testes from L. reuteri-treated mice had increased ST cross-sectioned profiles
  • the probiotic organism induced prominent Leydig cell accumulations in the interstitial tissue between the ST's
  • The probiotic-associated increase of interstitial Leydig cell areas was sustained with advancing age at 7 (CD vs CD+LR, P = 0.0025; CD+E.coli vs CD+LR, P = 0.0251) and 12 months
  • mice eating L. reuteri had profoundly increased levels of circulating testosterone regardless of the type of diet they consumed
  • blocking pro-inflammatory Il-17 signaling entirely recapitulates the beneficial effects of probiotics
  • previous studies we found that dietary probiotics counteract obesity [19] and age-related integumentary pathology [18] at least in part by down-regulating systemic pro-inflammatory IL-17A-dependent signaling
  • Testes histomorphometry and serum androgen concentration data were both suggestive of a probiotic-associated up-regulation of spermatogenesis in mice
  • Lactobacillus reuteri we discovered that aging male animals had larger testes compared to their age-matched controls
  • xamined testes of probiotic microbe-fed mice and found that they had less testicular atrophy coinciding with higher levels of circulating testosterone compared to their age-matched controls
  • Similar testicular health benefits were produced using systemic depletion of the pro-inflammatory cytokine Il-17 alone, implicating a chronic inflammatory pathway in hypogonadism
  • One specific aspect of this paradigm is reciprocal activities of pro-inflammatory Th-17 and anti-inflammatory Treg cells
  • Feeding of L. reuteri organisms was previously shown to up-regulate IL-10 levels and reduce levels of IL-17 [19] serving to lower systemic inflammation
  • insufficient levels of IL-10 may increase the risk for autoimmunity, obesity, and other inflammatory disease syndromes
  • Westernized diets are also low in vitamin D, a nutrient that when present normally works together with IL-10 to protect against inflammatory disorders
  • Physiological feedback loops apparently exist between microbes, host hormones, and immunity
  • The hormone testosterone has been shown to act directly through androgen receptors on CD4+ cells to increase IL-10 expression
  • studies in both humans and rodents suggest that hypogonadism is due to age-related lesions in testes rather than irregular LH metabolism
  • We postulate that probiotic gut microbes function symbiotically with their mammalian hosts to impart immune homeostasis to maintain systemic and testicular health [34]–[35] despite suboptimal dietary conditions.
  • Dietary factors and diet-induced obesity were previously shown to increase risk for age-associated male hypogonadism, reduced spermatogenesis, and low testosterone production in both humans and mice [2]–[4], [8]–[11], [14]–[17], phenotypic features that in this study were inhibited by oral probiotic therapy absent milk sugars, extra protein, or vitamin D supplied in yogurt.
  • Similar beneficial effects of probiotic microbes on testosterone levels and sperm indices were reported in male mice that had been simultaneously supplemented with selenium
  • L. reuteri-associated prevention of age- and diet-related testicular atrophy correlates with increased numbers and size of Leydig cells
  • the initial changes of testicular atrophy begin to occur in mice from the age of 6 moths onwards [7] and indicates that the trophic effect of L. reuteri on Leydig cells is a key event which precedes and prevents age-related changes in the testes of mice. This effect is reminiscent of earlier studies describing Leydig cell hyperplasia and/or hypertrophy in the mouse and the rat testis that were achievable by the administration of gonadotropins, including human chorionic gonadotropin, FSH and LH
  •  
    Fascinating study on how the addition of Lactobacillus reuteri increased Testicular size, prevented testicular atrophy, increased serum Testosterone production and protected against diet-induced/obesity-induced hypogonadism.  This was a mouse model
Nathan Goodyear

Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease - 0 views

  • The gut microbiota participates in the body’s metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders
  • Firmicutes and Bacteroidetes represent the two largest phyla in the human and mouse microbiota and a shift in the ratio of these phyla has been associated with many disease conditions, including obesity
  • In obese humans, there is decreased abundance of Bacteroidetes compared to lean individuals
  • ...21 more annotations...
  • weight loss in obese individuals results in an increase in the abundance of Bacteroidetes
  • there is conflicting evidence on the composition of the obese microbiota phenotype with regards to Bacteroidetes and Firmicutes ratios
  • Bifidobacteria spp. from the phyla Actinobacteria, has been shown to be depleted in both obese mice and human subjects
  • While it is not yet clear which specific microbes are inducing or preventing obesity, evidence suggests that the microbiota is a factor.
  • targeted manipulation of the microbiota results in divergent metabolic outcomes depending on the composition of the diet
  • The microbiota has been linked to insulin resistance or type 2 diabetes (T2D) via metabolic syndrome and indeed the microbiota of individuals with T2D is also characterized by an increased Bacteroidetes/Firmicutes ratio, as well as an increase in Bacillus and Lactobacillus spp
  • It was also observed that the ratio of Bacteriodes-Prevotella to C. coccoides-E. rectale positively correlated with glucose levels but did not correlate with body mass index [80]. This suggests that the microbiota may influence T2D in conjunction with or independently of obesity
  • In humans, high-fat Western-style diets fed to individuals over one month can induce a 71% increase in plasma levels of endotoxins, suggesting that endotoxemia may develop in individuals with GI barrier dyfunction connected to dysbiosis
  • LPS increases macrophage infiltration essential for systemic inflammation preceding insulin resistance, LPS alone does not impair glucose metabolism
  • early treatment of dysbiosis may slow down or prevent the epidemic of metabolic diseases and hence the corresponding lethal cardiovascular consequences
  • increased Firmicutes and decreased Bacteroidetes, which is the microbial profile found in lean phenotypes, along with an increase in Bifidobacteria spp. and Lactobacillus spp
  • mouse and rat models of T1D have been shown to have microbiota marked by decreased diversity and decreased Lactobacillus spp., as well as a decrease in the Firmicutes/Bacteroidetes ratio
  • microbial antigens through the innate immune system are involved in T1D progression
  • The microbiota appears to be essential in maintaining the Th17/Treg cell balance in intestinal tissues, mesenteric and pancreatic lymph nodes, and in developing insulitis, although progression to overt diabetes has not been shown to be controlled by the microbiota
  • There is evidence that dietary and microbial antigens independently influence T1D
  • Lactobacillus johnsonii N6.2 protects BB-rats from T1D by mediating intestinal barrier function and inflammation [101,102] and a combination probiotic VSL#3 has been shown to attenuate insulitis and diabetes in NOD mice
  • breast fed infants have higher levels of Bifidobacteria spp. while formula fed infants have higher levels of Bacteroides spp., as well as increased Clostridium coccoides and Lactobacillus spp
  • the composition of the gut microbiota strongly correlates with diet
  • In mice fed a diet high in fat, there are many key gut population changes, such as the absence of gut barrier-protecting Bifidobacteria spp
  • diet has a dominating role in shaping gut microbiota and changing key populations may transform healthy gut microbiota into a disease-inducing entity
  • “Western” diet, which is high in sugar and fat, causes dysbiosis which affects both host GI tract metabolism and immune homeostasis
  •  
    Nice discussion of how diet, induces gut bacterial change, that leads to metabolic endotoxemia and disease.
Nathan Goodyear

Metabolic characteristics of keto-adapted ultra-endurance runners - Metabolism - Clinical and Experimental - 0 views

  •  
    full study of previous abstract: low carb and high fat diet found to maintain muscle glycogen equal to high carb diet in endurance athletes.  Endurance athletes have high fat oxidation and this probably only applies to these endurance athletes; I would suspect this high fat oxidation would not be found in other short interval sports i.e. sprinting, football....
Nathan Goodyear

Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools: The CENTRAL MRI Randomized Controlled Trial | Circulation - 0 views

  •  
    low carb mediterranean nutrition out performs low fat diet; but both are not served by following weight number.  MRI shows that fat mobilization of the superior low carb mediterranean nutrition plan is not adequately reflected in weight measurement. 
Nathan Goodyear

Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. - PubMed - NCBI - 0 views

  •  
    low carb, high fat, ketogenic diet outperformed low calorie diet in people with type II diabetes
Nathan Goodyear

Testosterone level in men with type 2 diabetes mellitus and related metabolic effects: A review of current evidence - 0 views

  • defined by consistent symptoms and signs of androgen deficiency, and an unequivocally low serum testosterone level
  • the threshold serum testosterone level below which adverse clinical outcomes occur in the general population is not known
  • most population-based studies use the serum testosterone level corresponding to the lower limit, quoted from 8.7 to 12.7 nmol/L, of the normal range for young Caucasian men as the threshold
    • Nathan Goodyear
       
      this equals 251 to 366 in serum Total Testosterone
  • ...57 more annotations...
  • Researchers tried to examine whether serum total or free testosterone would be a better/more reliable choice when studying the effect of testosterone. The results were mixed. Some reported significant associations of both serum total and free testosterone level with clinical parameters25, whereas others reported that only serum free testosterone26 or only serum total testosterone6 showed significant associations.
  • −0.124 nmol/L/year in serum total testosterone
    • Nathan Goodyear
       
      this equates to a 4 ng/dl decline annually in total Testosterone.
  • In experimental studies, androgen receptor knockout mice developed significant insulin resistance rapidly
  • In mouse models, testosterone promoted differentiation of pluripotent stem cells to the myogenic lineage
  • testosterone decreased insulin resistance by enhancing catecholamine induced lipolysis in vitro, and reducing lipoprotein lipase activity and triglyceride uptake in human abdominal tissue in vivo
  • by promoting lipolysis and myogenesis, testosterone might lead to improved insulin resistance
  • testosterone regulated skeletal muscle genes involved in glucose metabolism that led to decreased systemic insulin resistance
  • In the liver, hepatic androgen receptor signaling inhibited development of insulin resistance in mice
  • independent and inverse association of testosterone with hepatic steatosis shown in a cross-sectional study carried out in humans
  • In short, androgen improves insulin resistance by changing body composition and reducing body fat.
  • Although a low serum testosterone level could contribute to the development of obesity and type 2 diabetes through changes in body composition, obesity might also alter the metabolism of testosterone
  • In obese men, the peripheral conversion from testosterone to estrogen could attenuate the amplitude of luteinizing hormone pulses and centrally inhibit testosterone production
  • leptin, an adipokine, has been shown to be inversely correlated with serum testosterone level in men
  • Leydig cells expressed leptin receptors and leptin has been shown to inhibit testosterone secretion, suggesting a role of obesity and leptin in the pathogenesis of low testosterone
    • Nathan Goodyear
       
      So what is "unequivocal"?
  • Baltimore Longitudinal Study of Aging (BLSA) cohort made up of 3,565 middle-class, mostly Caucasian men from the USA, the incidence of low serum total testosterone increased from approximately 20% of men aged over 60 years, 30% over 70 years, to 50% over 80 years-of-age
  • 30–44% sex hormone binding globulin (SHBG)-bound testosterone and 54–68% albumin-bound testosterone
  • As the binding of testosterone to albumin is non-specific and therefore not tight, the sum of free and albumin-bound testosterone is named bioavailable testosterone, which reflects the hormone available at the cellular level
  • Serum total testosterone is composed of 0.5–3.0% of free testosterone unbound to plasma proteins
  • alterations in SHBG concentration might affect total serum testosterone level without altering free or bioavailable testosterone
  • listed in Table​T
  • A significant, independent and longitudinal effect of age on testosterone has been observed with an average change of −0.124 nmol/L/year in serum total testosterone28. The same trend has been shown in Europe and Australia
  • Asian men residing in HK and Japan, but not those living in the USA, had 20% higher serum total testosterone than in Caucasians living in the USA, as shown in a large multinational observational prospective cohort of the Osteoporotic Fractures in Men Study
  • subjects with chronic diseases consistently had a 10–15% lower level compared with age-matched healthy subjects
  • In Caucasians, the mean serum total testosterone level for men in large epidemiological studies has been reported to range from 15.1 to 16.6 nmol/L
  • Asians, higher values, ranging from 18.1 to 19.1 nmol/L, were seen in Korea and Japan
  • Chinese middle-aged men reported a similar mean serum testosterone level of 17.1 nmol/L in 179 men who had a family history of type 2 diabetes and 17.8 nmol/L in 128 men who had no family history of type 2 diabetes
  • The reduction of total testosterone was 0.4% per year in both groups
  • HK involving a cohort of 1,489 community-dwelling men with a mean age of 72 years, a mean serum total testosterone of 19.0 nmol/L was reported
  • pro-inflammatory factors, such as tumor necrosis factor-α in the testes, could locally inhibit testosterone biosynthesis in Leydig cells47, and testosterone treatment in men was shown to reduce the level of tumor necrosis factor-α
  • In Asians, a genetic deletion polymorphism of uridine diphosphate-glucuronosyltransferase UGT2B17 was associated with reduced androgen glucuronidation. This resulted in higher level of active androgen in Asians as compared to Caucasians, as Caucasians' androgen would be glucuronidated into inactive forms faster.
  • Compared with Caucasians, the frequency of this deletion polymorphism of UGT2B17 was 22-fold higher in Asian subjects
  • Other researchers have suggested that environmental, but not genetic, factors influenced serum total testosterone
  • The basal and ligand-induced activity of the AR is inversely associated with the length of the CAG repeat chain
  • In the European Male Aging Study, increased estrogen/androgen ratio in association with longer AR CAG repeat was observed
  • a smaller number of AR CAG repeat had been shown to be associated with benign prostate hypertrophy and faster prostate growth during testosterone treatment
  • In India, men with CAG ≤19 had increased risk of prostate cancer
  • the odds of having a short CAG repeat (≤17) were substantially higher in patients with lymph node-positive prostate cancer than in those with lymph node-negative disease or in the general population
  • assessing the polymorphism at the AR level could be a potential tool towards individualized assessment and treatment of hypogonadism.
  • In elderly men, there was reduced testicular response to gonadotropins with suppressed and altered pulsatility of the hypothalamic pulse generator
  • a significant, independent and longitudinal effect of age on serum total testosterone level had been observed
  • A significant graded inverse association between serum testosterone level and insulin levels independent of age has also been reported in Caucasian men
  • Low testosterone is commonly associated with a high prevalence of MES
  • most studies showed that changes in serum testosterone level led to changes in body composition, insulin resistance and the presence of MES, the reverse might also be possible
  • MES predicted a 2.6-fold increased risk of development of low serum testosterone level independent of age, smoking and other potential confounders
  • Other prospective studies have shown that development of MES accelerated the age-related decline in serum testosterone level
  • In men with type 2 diabetes, changes in serum testosterone level over time correlated inversely with changes in insulin resistance
  • weight loss by either diet control or bariatric surgery led to a substantial increase in total testosterone, especially in morbidly obese men, and the rise in serum testosterone level was proportional to the amount of weight lost
  • To date, published clinical trials are small, of short duration and often used pharmacological, not physiological, doses of testosterone
  • In the population-based Osteoporotic Fractures in Men Study cohort from Sweden, men in the highest quartile of serum testosterone level had the lowest risk of cardiovascular events compared with men in the other three quartiles (hazard ratio [HR] 0.70
  • low serum total testosterone was associated with a significant fourfold higher risk of cardiovascular events when comparing men from the lowest testosterone tertile with those in the highest tertile
  • Shores et al. were the first to report that low serum testosterone level, including both serum total and free testosterone, was associated with increased mortality
  • low serum total testosterone predicted increased risk of cardiovascular mortality with a HR of 1.38
  • low serum total testosterone increased all-cause (HR 1.35, 95% CI 1.13–1.62, P < 0.001) and cardiovascular mortality (HR 1.25
  • European Association for the Study of Diabetes 2013 suggested there was an inverse relationship between serum testosterone level and acute myocardial infarction
  • Diabetic men in the highest quartile of serum total testosterone had a significantly reduced risk of acute MI when compared with those in the lower quartiles
  • serum total testosterone level in the middle two quartiles at baseline predicted reduced incidence of death compared with having the highest and lowest levels
  •  
    Nice review of Testosterone levels and some of the evidence linking Diabetes with low T.  However, the conclusion by the authors regarding what is causing the low T in men with Diabetes is baffling.  The literature does not point to one cause, it is clearly multifactorial--obesity, inflammation, high aromatase activity...I would suggest the authors continue their readings in the manner.
1 - 20 of 59 Next › Last »
Showing 20 items per page